

Online Analytical Solutions Experts

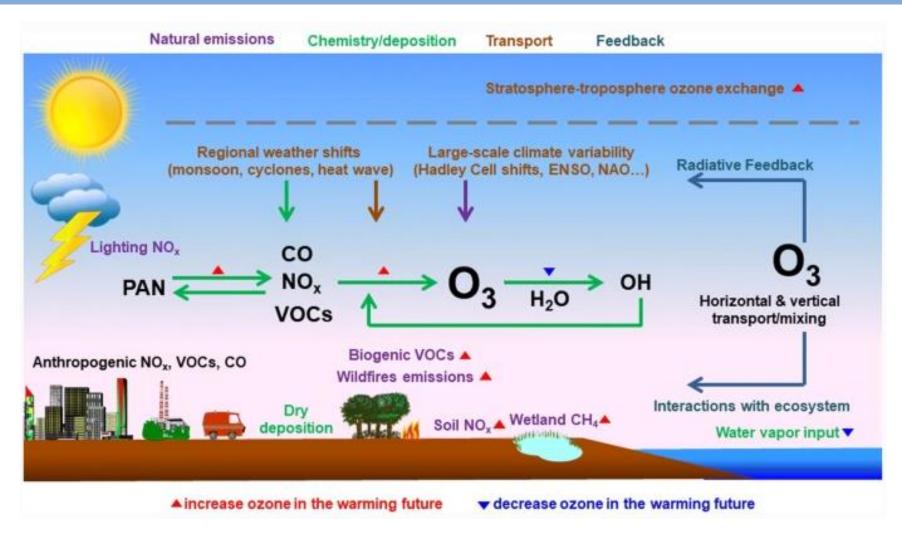
Chromatotec Sales Meeting

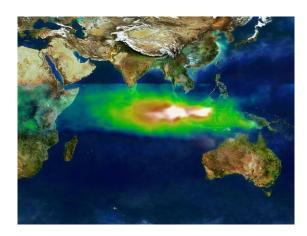
France, Saint-Antoine, July 5 to 7

Online Analytical Solutions Experts

Micro Formaldehyde

Portable analyzer for continuous formaldehyde monitoring in ambiant air




Ozone precursors

Ozone precursors

- Ozone concentration has multiplied 5 times in the last century in the middle latitudes of the northern hemisphere:
 - From 10 ppb in 1874
 - ► To approximately 50 ppb today (increase of 1.6% per year)
 - ▶ The trend is higher (2.4% a year) over the last decades.¹
- In order to stop this global trend, directives have been written concerning the reduction of ozone precursors emissions (NOx, VOC like formaldehyde) to define national emission maxima.

¹The International Geosphere-Biosphere Program - World Climate Research Program ²http://visibleearth.nasa.gov/view_rec.php?id=1651

VOCs

- 100+ different chemicals
- Anthropogenic sources
 - BTEX from road traffic
 - Chlorinated compounds from industries
- Biogenic sources
 - Isoprene and Monoterpenes from trees
 - Natural emissions occur predominantly in the tropics (23°S to 23°N)
- VOCs and PM 2.5 relation
 - 50% of dry mass PM 2.5 are composed by OA: Organic Aerosol
 - 60% SOA Secondary Organic Aerosol from VOCs ^{1,2}

¹ Kanakidou et al. Atmos. Chem. Phys., 5 2005. ² Haddad et al. Atmos. Chem. Phys. Discuss., 2010

VOCs

- European list 31 VOCs including BTEX and formaldehyde (WG13 work on new European list)
 - In Europe, ambient air legislation targets Benzene
 - With annual target value of 5 μg/m³
- US EPA lists
 - PAMS 56 including BTEX or 58 (including alpha and beta pinenes) formaldehyde included
 - New PAMS 61 including BTEX, 1-3 Butadiene, alpha and beta pinenes formaldehyde included
 - TO14: including BTEX, Cl-VOCs
 - TO15: including BTEX, Cl / Br / O-VOCs

ANNEX X of European directive 2008/50/EC

```
Analyzed by airmoVOC C2 to
               C6
C2
      Ethane = C2
    Ethene / ethylene
C3
      Propane = C3
    Propene
    isobutane (2-méthyl propane)
C4
      n-butane = C4
    Acetylene
    trans-2-butène
    1-butene
    1.3-Butadiene
    cis-2-butène
    Iso-pentane (2-methyl butane )
      n-pentane =C5
C5
    1-pentene
    2-methylpentane = I Hexane
C6
      n-hexane =C6
    isoprene
```

```
Analyzed by airmoVOC C6 to C12
```

C6 Benzene

c7 n-heptane = C7

Toluene

C8 2,2,4-trimethylpentane

= Iso Octane

n-octane =C8

Ethylbenzene

m-xylene

p-xylene

o-xylene

C9 1,3,5 trimethylbenzene

1,2,4 trimethylbenzene

1,2,3 trimethylbenzene

Analyzed by airmoHCHO

Formaldehyde

Analyzed by ChromaTHC

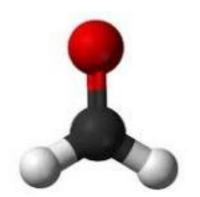
Total non-methane hydrocarbon

Many other VOCs can be added to this list and monitored with the same system

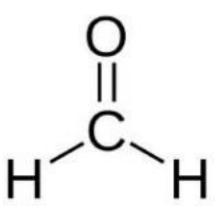
Formaldehyde monitoring – Different technologies

- 1. Official method with HPLC and DNPH cartridges
- 2. Online autoGC-FID with methanizer: airmoHCHO
- 3. Laser technology
- 4. Portable microfluidic technology

MicroFormaldehyde portable analyzer



Why analyze formaldehyde?


Formaldehyde is present in :

- Chemical, pharmaceutical, funeral industries
- Paper plants
- Indoor air (paintings, coatings)

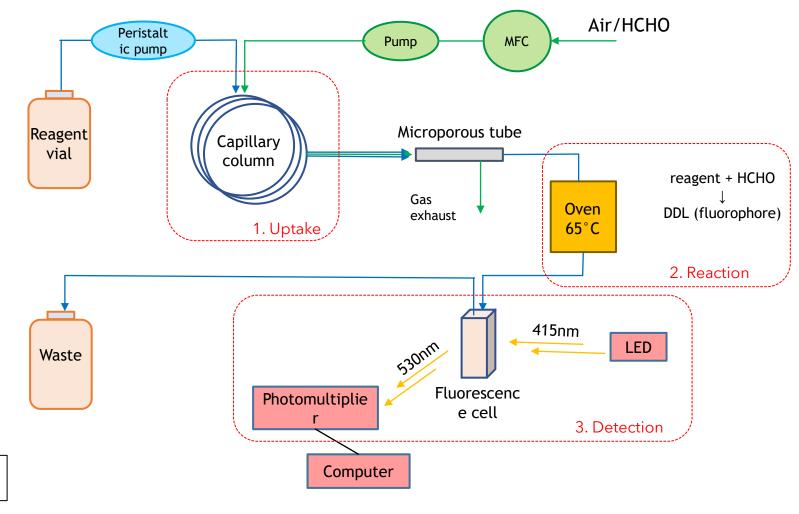
Formaldehyde effects:

- Irritating, breathing issues (<500 ppb)
- Carcinogenic (>500 ppb)
- Risk of death (> 20 ppm)

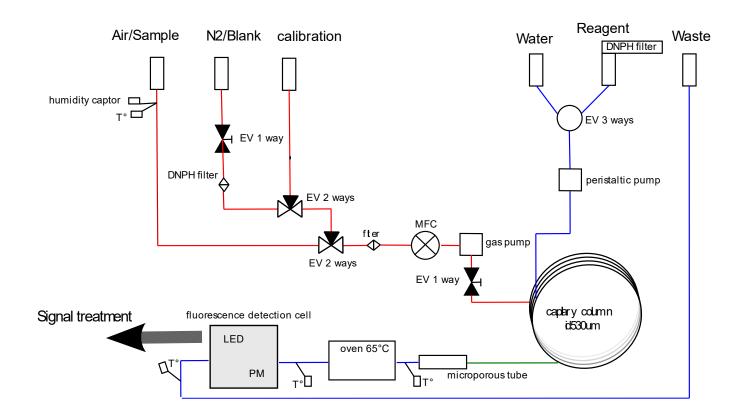
https://www.atousante.com/risques-professionnels/cmr-cancerogenes-mutagenes-toxiques-reproduction/formaldehyde/formaldehyde-effets-sante/

New portable micro Formaldehyde analyzer

Dimension	32 cm × 28 cm × 15 cm
Weight	6,5kg
Limit of detection	1 μg/m3
Linearity range	0 - 400 μg/m3
Trapping type	Microfluidic annular flow
Derivitization reagent	Fluoral-P (acetylacetone)
Detection type	Fluorescence



Developped in collaboration with CNRS French Research Center

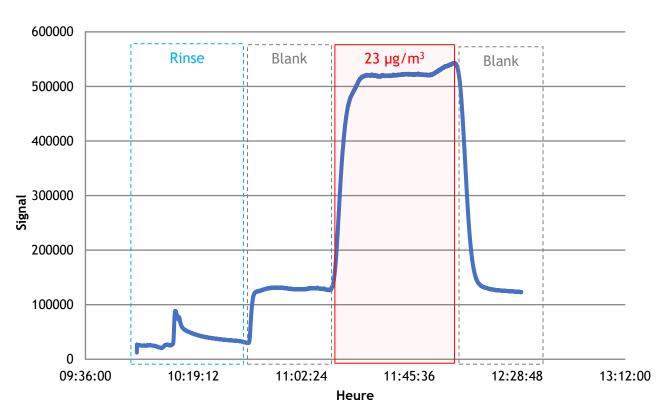

Wall mounted autoGC

gas liquid

Full scheme

Internal view

Microporous tube



DNPH cartridge

Particle filter

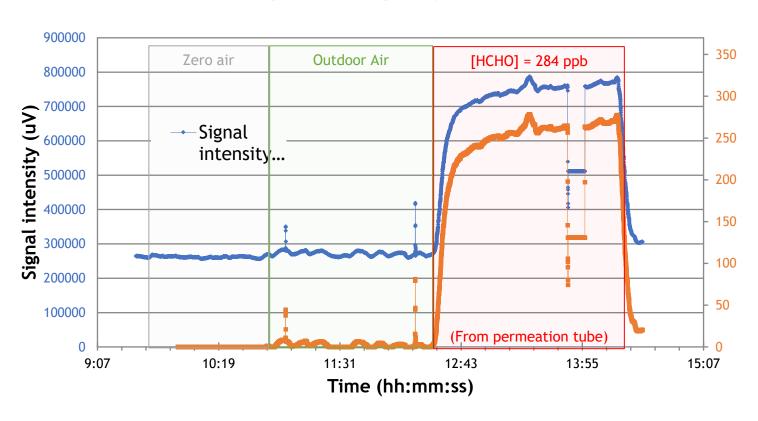
Principle Typical curve

Test parameters:

Liquid flow rate : 17 μL/min
 Gas flow rate : 250 mL/min
 Concentration: 23μg/m³

• Tube length: 10 cm

Anaïs Becker's work


The intensity of the signal is proportional to the concentration of formaldehyde

PrincipleTypical curve

- Intensity curve
- Concentration curve (μg/m³ or ppb)

μF-1 sampling tests

Consumables

- Strainer for particle filter (pore diameter 7 µm): to change every month
- DNPH tubes and rings: to change every month
 - One for reagent bottle preservation
 - One inside the analyser to filter outdoor air to do blank measurements
 - Storage at 5°C, away from the light
- Microporous tube (10 cm): to change every month
- Reagent: 100 mL for 80h with analysis caps
 - Storage at 5°C
- Distilled water: 100 mL for 80h
- (Waste bottle to empty after each use)

Performance

Detection range: 0-400 ppb

Detection limit: 1 ppb (1.2 μg/m³)

Response time: 10 min

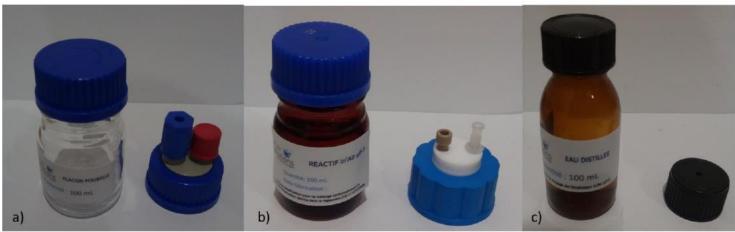
Time resolution: Few seconds to 120 s

Reagent consumption: 1.2mL per 60 minutes

Conditions:

Gas T°: 5 - 40°C;

Gas Relative humidity: 20 - 80%


Atmospheric pressure

Altitude max: 2000m

Launching and using the device Set-up

Set-up

Caps for liquid and gas connexion removed Bottles with specific caps in place Gas at atmospheric pressure Then turn on the analyser

Analysis

Stabilisation User mode and expert mode 09:00 **STANDARD** Séquence Continu Calibration Résultats **Paramètres** Tests/Maintenance **Analysis** T.four: 47.9 °C Calibration: 2018-04-26 08-56 D.gaz : 20.0 mL/min HR: 40.0 % T.liane: 20.6 °C

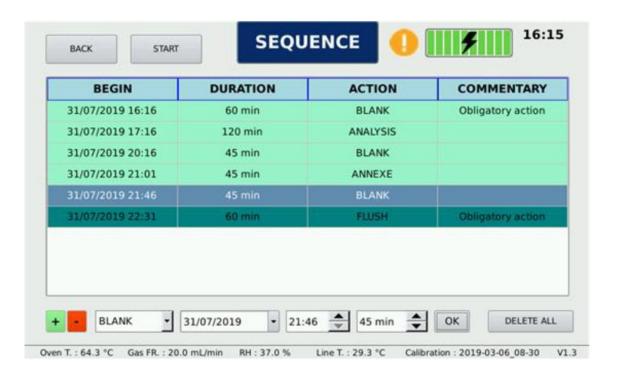
Sequence : Programmable sequence Continuous : Manual change of modes

General parameters and analysis parameters

Analysis

Before a run, check that the analyser is calibrated (minimum every 3 months)

Continuous measurement :


Manual blank, mesure, rincing steps 10min delay when switching from one mode to an other.

Analysis

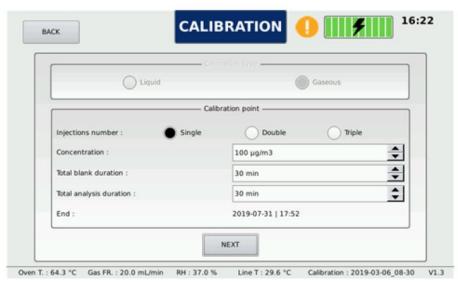
Sequence programming

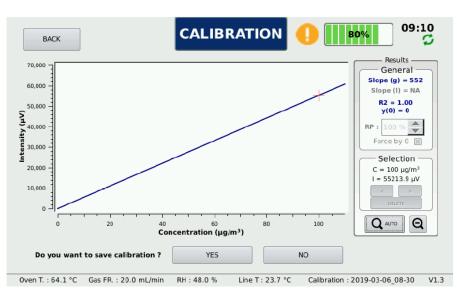
Results

Typical blank baseline: $100,000-150,000 \mu V$

Signal saturation: 2,000,000

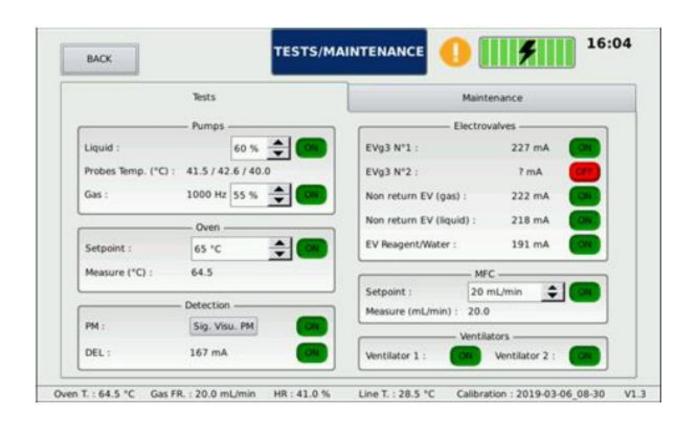
Results




- Direct visualisation
- Exportation as excel file (via USB key)

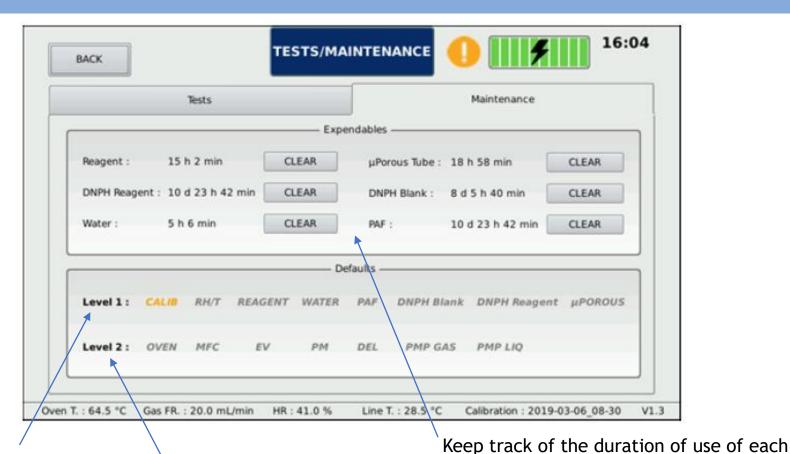
Calibration

- 1. Connect calibration HCHO to calibration port
- 2. Program and launch



For liquid calibration, connect calibration solution to water port.

The steps are the same as for the gaseous calibration, only the end of calibration screen is different: uptake yield can be changed (gaseous slope vs liquid slope)



Tests/Maintenance

Tests/Maintenance

Level 1 issue:

Device continues to operate

Level 2 issue:

The analyser stops immediately: problem has to be solved and the system has to be restarted

consumable and reset when changed

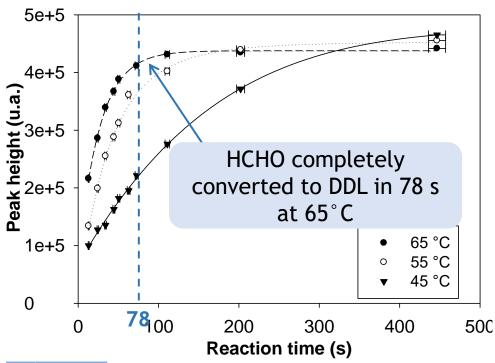
Field campaigns

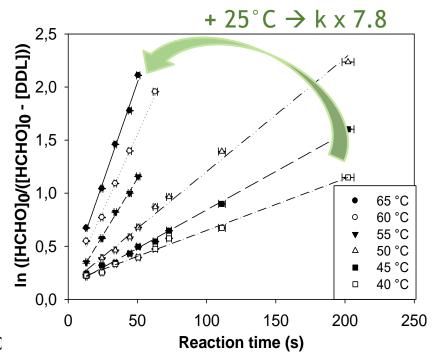
- MERMAID project
- « Near Real-Time Monitoring of Formaldehyde in a Low-Energy School Building ». Atmosphere 10, nº 12 (décembre 2019): 763.

https://doi.org/10.3390/atmos10120763.

► IMPACT'AIR

Miniaturized analyzer based on microfluidic technology dedicated to quantification of indoor air pollution

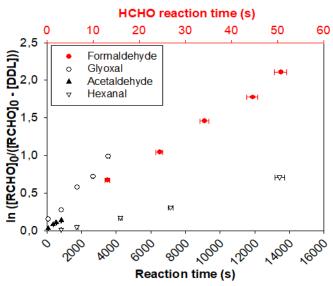

Strasbourg University - 5/6 june 2019

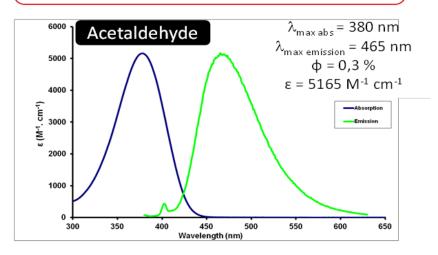


Reaction and kinetic study

Formaldéhyde Acétylacétone
$$\begin{array}{c} O & O \\ H & + \end{array}$$
 $\begin{array}{c} O & O \\ O & O \\ \hline \\ NH_3 \\ \hline \\ H \\ Dihydrolutidine DDL \\ \end{array}$

Kinetic study (Pseudo 1st order reactions)




Reaction and kinetic study

$10^3 \times k \ (\pm \Delta k)$ (L ² mol ⁻² s ⁻¹) at 65°C		
94000 ± 5000		
31.3 ± 1.6		
15.6 ± 0.8		
8.7 ± 0.4		

$$\phi$$
 = 1,5 % ϵ = 6600 M⁻¹ cm⁻¹

Acetaldehyde, Hexanal, Glyoxal

- Low water solubility
- Low fluorescence quantum efficiency
- Low rate reaction constant

No possible interference between these aldehydes and acetylacetone reagent

10

Formaldehyde specificity

Acetaldehyde, Hexanal, Glyoxal

- Low water solubility
- Low fluorescence quantum efficiency
- Low rate reaction constant

No possible interference between these aldehydes and acetylacetone reagent

10

Best Features

- Continuous and near real-time measurements
 - vs Standard method (ISO: NF ISO 16000-3): Successive sampling on DNPH cartridge and HPLC analysis Time consuming and bulky equipment
- Temporal resolution of a few seconds
- High formaldehyde selectivity
 Fluorescence detection excitation and emission wavelength specific to DDL
- No known interference
- LOD 1 ppb
- Portable
- Gaseous or liquid calibration possible

Technology comparison

Specification	Reference method DNPH	aerolaser	Chromatotec airmoHCHO	Chromatotec microF
Detection principle	Derivitization method with DNPH Spectrometer	Thermal desorption and fluorimetric detection (Hantzsch reaction)	GC with FID and methanizer	Derivitization method with DNPH Fluorescence Detector
LDL	Around 10ppb	Around 0,1ppb	Less than 1 ppb in automatic	About 1ppb
Linearity		Linear from 0,1 to 3000ppb with R ² > 0,999	Linear on peak area R ² > 0.995 for each compound at ppb or ppm	Linear on 0 - 400 µg/m3 range
Long term stability			RSD on 48 hours < 2% at 2 ppm for all compounds	N/A
Interferences	Other aldehydes	Other aldehydes	Not sensitive to humidity and hydrocarbons.	Specific to Formaldehyde
Compounds measured	Formaldehyde	Formaldehyde	Formaldehyde Methanol Acetaldheyde	Formaldehyde

Feedback from scientific researchers confirm that other solutions are not able to continuously monitor formaldehyde at low ppb (0-30ppb) range accurately

Applications & Markets

- Service study, control laboratory for campaign and HSE departments
- ► Indoor air (paintings, coatings) & Clean rooms
- Ambient air monitoring in urban and rural areas
- Industrial fence line monitoring
- Chemical, pharmaceutical, funeral industries
- Paper plants

User profiles

- Service companies (ex: Bureau Veritas)
- ► Governmental agencies (EPA, INERIS)
- Meteorological institutes
- Universities and Research centers
- Industrial consortia
- ► Petrochemical groups

Some reference customer

- La Rochelle University
 - Research studies for indoor air
- CSTB (Construction Scientific and technical center)
 - Indoor air control
- FCBA (Pole Bois Bordeaux)
 - Indoor air control in wood and wood related industries.

Thanks for your attention