E-mail:support@chromatotec.com

The Problem :

VOC ANALYSIS AMBIENT AIR

Ozone concentration has increased by 5 since the end of the previous century at middle latitudes of the Northern hemisphere from 10 PPB in 1874 to approximately 50 PPB today. This represents a growth rate of 1,6% per year, the trend is probably higher (2,4% a year) over the last decades. (Chapter 1 of the International Geosphere-Biosphere Program -World Climate Research Program)

To stop this phenomenon, directives have been launched in particular with regard to the **reduction of ozone precursors emissions** (NOX and VOC) by stating national emission ceilings (**Directive 2000/96/EC** on **Benzene** emissions : the aim is to reduce the emissions to

a lower value of **5ug/m3** annual average **by 2010** for countries in the EU) but also by the way analysis and follow-up must be directed.

As far as VOC analysis is concerned the European directive 2002/3/CE advises the analysis of 31 VOC, in continuous and 24 hours a day. The US Environnemental protection Agency proposes the analysis of 56 VOC as part of its PAMS programme Assessment Monitoring (Photochemical VOC are Stations), and in Japan, 58 concerned (Alpha and Beta pinene). Our instruments have been developped in order to meet these requirements.

The Solution :

airmOzone cabinet

airmOzone cabinets are composed of one airmoVOC C2-C6 and one airmoVOC C6-C12. The combination of these two instruments allow the analysis of light and heavy VOC compounds with an excellent quality for seperation of compounds and high sensitivity thanks to the FID detector (down to few PPT). These instruments have been calibrated with primary standard gas mixtures certified at $\pm 2\%$.

Absolutely autonomous, our instruments are equipped with internal calibration (**airmoCAL**). The **VISTACHROM** software pilotes the analysers and can store and view chromatograms through Peak Viewer. One can transfer data to a data logger thanks to the communication protocoles MODBUS, JBUS or BAYERN HESSEN PROTOCOL.

Thanks to all these qualities the airmOzone is an adequate solution to VOC analysis in situ.

www.chromatotec.com

EPSILON

<u>APPLICATION 31 VOC</u> : List of compounds (European directive 2002/3/CE) :

		1								
1	ethane			#	Name	Rt Min	Rt Max	Alarm Min	Alarm Max	x Factor
2	ethene/ethylene			1	ETHANE	50,00	60,00	0,00	9999,00	1,00
3	propane			2	ETHYLENE	72,00	82,00	0,00	9999,00	0,96
4	propene/propylene			3	PROPANE	10,00	110,00	0,00	9999,00	1,00
5	isobutane (2-methyl propane)			4	PROPENE	202,00	212,00	0,00	9999,00	0,96
6	n-butane			5		225,00	235,00	0,00	9999,00	1,00
7			O a man a sum al a	7		242,00	252,00	0,00	9999,00	1,00
			Compounds	6	TRANS.2.PHTENE	250,00	303,00	0,00	0000 NN	0,30
8	trans-2-butene		analysed by	l G	1.BUTENE	363.00	373.00	0,00	9999 00	0,00
9	1-butene			10	CIS-2-BUTENE	385.00	395.00	0,00	9999 00	0.96
10	cis-2-buténe		airmoVOC C2-	11	I-PENTANE	395.00	405.00	0.00	9999.00	1.00
11	isopentane (2-methylbutane)			12	N-PENTANE	412,00	422,00	0,00	9999,00	1,00
12	n-pentane		C6	13	1-3-BUTADIENE	465,00	475,00	0,00	9999,00	0,93
13	1-3 butadiene			14	TRANS-2-PENTENE	483,00	493,00	0,00	9999,00	0,93
14	1-pentene			15	1-PENTENE	500,00	510,00	0,00	9999,00	0,93
15	trans-2-pentène			16	CIS-2-PENTENE	515,00	525,00	0,00	9999,00	0,93
16	cis-2-pentène			17	N-HEXANE	558,00	568,00	0,00	9999,00	1,00
17				18	ISOPRENE	590,00	600,00	0,00	9999,00	1,00
10	isopropo			19	1-HEXENE	635,00	645,00	0,00	9999,00	0,97
10		1		. 1		(De LU	Inu	[11 11:]		-
19	1-nexene	٢		#	Name	Bt Min	Bt Max	Alarm Min	Alarm Max	1 oo
20	benzene			2		2/3 00	253,00	0,00	9999,00	1.00
21	iso-octane		Compounds	3	224-TME-PENTANE	317.00	325.00	0,00	9999 00	1.00
22	n-heptane			4	N-HEPTANE	346.00	354,00	0.00	9999,00	1.14
23	toluene		<u>analysed by</u>	5	TOLUENE	500,00	510,00	0,00	9999,00	1,05
24	n-octane			6	N-OCTANE	613,00	623,00	0,00	9999,00	1,00
25	ethylbenzene		<u>airmovoc</u>	7	ETHYLBENZENE	703,00	713,00	0,00	9999,00	1,10
26	m-xylene		00.040	8	M&P-XYLENES	718,00	728,00	0,00	9999,00	1,10
27	n-xylene		<u>66-612</u>	9	STYRENE	745,00	754,00	0,00	9999,00	1,10
20				10	U-XYLENE	753,00	763,00	0,00	9999,00	1,10
20				12	125 TMP	052.00	786,00	0,00	9999,00	1,14
29	1,3,5 trimethyidenzene			13	124-TMB	879.00	889.00	0,00	9999 00	1 14
30	1,2,4 trimethylbenzene	ʹ	1	14	N-DECANE	892.00	902.00	0.00	9999.00	1.13
31	1,2,3 trimethylbenzene			15	123-TMB	907,00	917,00	0,00	9999,00	1,14
						••••				

On the right : Substance tables programmed for the application 31 VOC.

- **MIN RT** and **MAX RT** : time span over which compounds appear.
- Factor : Response factor of each compound are (these factors determined values and the factor of the relative compound is 1 (BENZENE or N-BUTANE according to the analyser). During calibration а parameter (Base Sensitivity) is calculated for the relative compound and then applied to all other compounds.

For this application 31 COV, we propose **30**minute standard methods to identify 31 compounds. We voluntarily add 4 other compounds (underlined in red) which are known to be possible interfering ones (Cyclohexane with Benzene or Styrene with O-Xylene) but that we can easily separate. We also add Decane et le Nonane present in ambiant air.

As an information, we can allot to several compounds their specific source:

- Styrene : petrochemistry
- **BTEX** : road traffic (four-stroke engine)
- Acetylene :road traffic

- **Cyclohexane** : solvents, two-stroke engine (mopeds,...)

- **1,3-butadiene** : chemical industry and road traffic

- **Isoprene** : plant species, biogenous origin terpene precursors (α and β pinenes, limonene...)

Chromatograms from tests realised with a cylinder with a mixture of

31 VOC: (N-Nonane, N-Décane + the 31 compounds of the European list)

airmoVOC C2-C6 : Method 30 minutes

airmoVOC C6-C12 : Method 30 minutes

Example from a user : Accredited Association for Air QUality Monitoring in France (AASQA).

Matériel :

This association has a complete airmOzone and follows the VOC concentration in ambient air in a peri-urban area close to a big city.

- airmoVOC C2-C6
- airmoVOC C6-C12 with integrated supervisor (computer + LCD display)
- airmoCAL (multiplexer (zero/calib/ambient) + calibration oven (N-Butane/N-Hexane/Benzene tubes)
- airmoPURE (zero air generator)
- **HYDROXYCHROM** (hydrogene generator)

Data transfert:

Data (substances, concentrations, kind of methods, retention times, alarms...) are transferred from our supervisor to a data logger through MODBUS communication protocole and the data logger transfers data to another site via telephone line.

Analytical mehod and sequence:

The association works with a sequence of 30-minute cycle :

- 1 CALIBRATION method (measurement of concentration on standard calibration)
- 47 analytical methods AMBIENT AIR

Calibration/Autocalibration:

Internal calibration is used to follow-up and readjust Base Sensitivity proper to the instrument and taken into account for the calculation of the concentration of each compound.

Calibration standards are permeation tubes calibrated and certified $(\pm 10\%)$, put into the thermostated calibration oven of the airmoCAL. In this range of instruments with FID autocalibration is not necessary:

Underneath: the results of **5-month** calibration methods have been overlaid ((1) may to September 2007 on airmOzone C6-C12 unit). We can notice the **stability of** retention times (2) and on concentrations (3) for Benzene and Hexane.

Some collected data :

The fixed station we equipped has been running for more than six mois in total autonomy. Here is 1-week analytical data in ambient air (april 12 to 18, 2007) viewed by our capture software PEAK VIEWER :

By superimposing follow-ups of concentrations of various compounds over the same period, one can identify sources of pollution by their profile of emission. Follow-up of concentrations can be visible by using the Trend function Trend Result de notre Peak Viewer softa.

www.chromatotec.com

EPSILON

Results:

Acetylene is often regarded as a tracer of VOC emission of road traffic. It will be noted that the concentration remains between 0,5 and 1 μ g/m3 with maximum concentration in the morning around 9:00 a.m. and in the evening (rush hours of the traffic). The largest peak is observed at 9:00 a.m. on April 16 when the concentration in the air reached 5 μ g/m3.

On the airmoVOC C6-C12 unit, during this week of April 12 - 18, 2007, **ethylbenzene**, **xylenes** variations, follow each others perfectly, this is characteristic of the emission profile one can observe for road traffic

(cf :Thesis by Caroline Badol, Lille 1, 2005). This assumption is validated if one compares the evolution of the concentration of acetylene with that of the BTEX.

It will also be noted that in periurban areas, the average benzene concentration is close to $0.5 \mu g/m3$ which remains quite lower than the annual average threshold that countries of the European Union must respect at the end of 2010.

Peaks in pollution coincide with the hours of road traffic.

APPLICATION 56 COV:

List of compounds (Programme Photochemical Assessment Monitoring Stations de l'US Environnemental Protection Agency) :

1	ethane		Ħ	Name	Bt Min	Bt Max	Alarm Min	Alarm Max	Factor
2	ethene / ethylene		1	ETHANE	51.00	61.00	0.00	9999 00	1.00
3	propane		2	ETHYLENE	80.00	90.00	0,00	9999 00	0.96
4	propene		3	PROPANE	115.00	125.00	0.00	9999 00	1.00
5	isobutane (2-méthyl propane)		4	PROPENE	268.00	278.00	0.00	9999.00	0.96
6	n-butane		5	I-BUTANE	290.00	300.00	0.00	9999.00	1.00
7	acetylene		6	N-BUTANE	314.00	324.00	0.00	9999.00	1.00
0	trong 2 butèng		7	ACETYLENE	405.00	415.00	0.00	9999.00	0.96
0	1 hutono		8	TRANS-2-BUTENE	465,00	475,00	0,00	99999,00	0,96
9		•	9	1-BUTENE	483,00	493,00	0,00	9999,00	0,96
10	cis-2-butene	Compounds	10	CIS-2-BUTENE	508,00	518,00	0,00	9999,00	0,96
11	cyclopentane	an ab sa al	11	CYCLOPENTANE	518,00	522,00	0,00	9999,00	1,00
12	isopentane (2-methyl butane)	analysed	12	I-PENTANE	527,00	537,00	0,00	9999,00	1,00
13	n-pentane	hy airmaVOC	13	N-PENTANE	550,00	560,00	0,00	9999,00	1,00
14	trans-2-pentene		14	TRANS-2-PENTENE	653,00	663,00	0,00	9999,00	0,96
15	1-pentene	C2-C6	15	1-PENTENE	683,00	693,00	0,00	9999,00	0,96
16	cis-2-pentène	02 00	16	CIS-2-PENTENE	700,00	709,00	0,00	9999,00	0,96
17	2,2-dimethylbutane		17	2-2-DIME-BUTANE	709,00	714,00	0,00	9999,00	1,00
18	methylcyplopentane		18	ME-CYCLOPENTANE	714,00	718,00	0,00	9999,00	1,00
19	2,3-dimethylbutane		19	2-3-DIME-BUTANE	728,00	734,00	0,00	9999,00	1,00
20	2-methylpentane		20	2-ME-PENTANE	734,00	738,00	0,00	9999,00	1,00
21	3-methylpentane		21	3-ME-PENTANE	738,00	748,00	0,00	9999,00	1,00
22	n-hexane		22		/55,00	765,00	0,00	9999,00	1,00
23	isoprene		23	ISUPRENE A DENTENE	803,00	813,00	0,00	9999,00	1,00
24	2-methyl-1-pentene		24	Z-ME-T-PENTENE	858,00	868,00	0,00	9999,00	1,00
25	2.4-dimethylpentane		++	Name	Dista	Distant	Alarm Min	Alarm Mary	Enster
26	benzene		1	2.4.DIME.PENTANE	196.00	205.00			1.06
27	cychohexane		2	BENZENE	238.00	248.00	0,00	9999 00	1,00
28	2-methylbexane		3	CYCLOHEXANE	255.00	265.00	0.00	9999.00	1.00
29	2 3-dimethylpentane		4	2-3-DIMEC5+2MEC6	280,00	285,00	0,00	9999,00	1,10
30	3-methylbexane		5	3-ME-HEXANE	297,00	307,00	0,00	9999,00	1,10
31	2.2.4-trimethylpentane		6	224-TME-PENTANE	333,00	343,00	0,00	9999,00	1,10
32	n boptano		7	N-HEPTANE	363,00	373,00	0,00	9999,00	1,10
32	methylovelebovene		8	ME-CYCLOHEXANE	425,00	430,00	0,00	9999,00	1,10
33			9	234-TME-PENTANE	520,00	530,00	0,00	9999,00	1,10
25	z,3,4-timethyipentane		10	TOLUENE	530,00	540,00	0,00	9999,00	1,05
30	2 methylhentene		11	2-ME-HEPTANE	572,00	582,00	0,00	9999,00	1,10
30	2-methylheptane		12		593,00	603,00	0,00	99999,00	1,10
37	3-methylneptane		14	ETHYLBENZENE	767.00	775.00	0,00	9999 00	1,10
38	n-octane	Compounds	15	M&P-XYLENES	785.00	793.00	0,00	9999.00	1 10
39	ethylbenzene		16	STYRENE	817.00	826.00	0.00	9999.00	1.10
40	m-xylene	analysed by	17	0-XYLENE	826,00	836,00	0,00	9999,00	1,10
41	p-xylene		18	N-NONANE	860,00	870,00	0,00	9999,00	1,10
42	styrene	airmovoc	19	I-PROPYLBENZENE	884,00	894,00	0,00	9999,00	1,09
43	o-xylene	C6 C42	20	N-PROPYLBENZENE	930,00	940,00	0,00	9999,00	1,08
44	n-nonane	<u>60-612</u>	21	M-ETHYLTOLUENE	940,00	947,00	0,00	9999,00	1,04
45	isopropylbenzene		22	P-ETHYLTOLUENE	947,00	953,00	0,00	9999,00	1,04
46	n-propylbenzene		23	135-TMB	955,00	965,00	0,00	9999,00	1,14
47	m-ethyltoluene		24		970,00	1000.00	0,00	9999,00	1.05
48	p-ethyltoluene		20		1010.00	1020.00	0,00	9999 00	1.10
49	1,3,5 trimethylbenzene		20	123-TMB	1030.00	1020,00	0,00	9999.00	114
50	o-ethyltoluene		28	M-DIETHYLBENZENE	1060.00	1070.00	0.00	9999 00	1.17
51	1,2,4 trimethylbenzene		29	P-DIETHYLBENZENE	1070.00	1080.00	0,00	9999.00	1,18
52	decane		30	N-UNDECANE	1130,00	1140,00	0,00	9999,00	1,20
53	1,2,3 trimethylbenzene		31	N-DODECANE	1240,00	1250,00	0,00	9999,00	1,20
54	m-diethylbenzene								
55	p-diethylbenzene								
56	undecane								
~									

www.chromatotec.com

EPSILON

Chromatograms from tests realised with a cylinder with a mixture of 56 VOC :

