

Omar Guerra

Meteorology Service Technical training, France, 1-5 July 2019

- How permeation tubes work
 - •– Constant temperature
 - Tubes go in a vessel, which goes inside a heating block

- Liquid-filled tube releases in a small but consistent emission of compound vapor
- Permeation membrane is made of Teflon

- Permeation tube emission rates and types
 - Factors effecting tube emission rate
 - Permeability of its chemical analyte through the membrane
 - Temperature
 - Molecular weight
 - Vapor pressure

Physical characteristics of its permeable membrane.

- Permeation tube emission rate is determined by weight loss over time
 - Tube is weighed periodically and then assigned an emission rate
- Certification time frame determined by emission rate
 - The lower the emission rate, the longer it takes to get the tube

- How to generate a gas standard
 - Tube with a given emission rate
 - Must be heated to required certification temperature (varies by compound)
 - Inert dilution gas flow sweeps the compound out of the chamber
 - The lower the flow, the higher concentration and vice versa

- Concentration calculation
 - **ppmv:** C = (E * K_o) / F
 - Where:
 - **C** = desired concentration in ppmv.
 - **E** = certified emission rate (ng/min) as reported on your tube certificate.
 - K_o = 22.4 (molar volume of gas)/compound molecular weight
 - value that corresponds to the compound-specific K_o on permeation tube certificates. Proportionality constant that is used to convert emission rates from a volume (nL/min) to a weight (ng/min).
 - **F** = rate of dilution flow you are using (cc/min)

• Example: What is the concentration produced by an H2S tube that generates 1000 ng/min in a carrier gas flow of 500 cc/min?

— **C** = ?

- **E** = 1000 ng/min

$$-K_{o} = 0.66$$

- value that corresponds to the compound-specific K_o on permeation tube certificates. Proportionality constant that is used to convert emission rates from a volume (nL/min) to a weight (ng/min).
- » **F** = 500
- » C = (1000 * 0.66) / 500
- » C = 1.32 ppmv

- Calibrating an analyzer (based on procedures as set forth be KIN-TEK Analytical, Inc.)
 - Set up your gas calibration standards generator in close proximity to the gas analyzer
 - Connect carrier/diluton gas cylinder of N2 or Zero Air to the generator
 - Dilution gas in port
 - Connect the analyzer and the gas standards generator using appropriate hardware
 - Vent line to appropriate fume hood or other exhaust
 - Span gas out port of the generator tubing to the sample in port of the gas analyzer
 - Power supply

- Calibrating an analyzer (based on procedures as set forth be KIN-TEK Analytical, Inc.)
 - Generate calibration gas
 - Power on the gas standards generator
 - Set a minimum flow before inserting the permeation tube
 - Using proper personal protective equipment, insert proper permeation tube (e.g. H2S) into the oven chamber of the generator
 - If the permeation tube is in the oven chamber, there must always be carrier gas flowing
 - » Compound may build up and damage critical components otherwise

- Calibrating an analyzer (based on procedures as set forth be KIN-TEK Analytical, Inc.)
 - Generate calibration gas
 - Set the instrument to the proper operation temperature as indicated by the permeation tube certificate.
 - Equilibrate the oven chamber and tube to the certification temperature
 - » This typically takes 45 minutes, but can take 12 hours and in the case of a brand-new formaldehyde tube, 24-48 hours is recommended
 - Calculate the flow rate needed for the concentration needed to calibrate your analyzer

- Calibrating an analyzer (based on procedures as set forth be KIN-TEK Analytical, Inc.)
 - Generate calibration gas
 - Set the instrument flow based on the concentration calculation results
 - Automated systems are available such as the FlexStream[™]
 Base by KIN-TEK Analytical located in La Marque, TX, USA.
 - Manually-operated systems are available, as well
 - Place instrument in standby or other similar mode
 - This allows the instrument to remain ready for producing calibration gas with a minimum of carrier gas usage

- Calibrating an analyzer (based on procedures as set forth be KIN-TEK Analytical, Inc.)
 - Set your analyzer to calibration mode
 - Set the gas standards generator to Span mode
 - This mode is used to create the calibration gas

- Calibrating an analyzer (based on procedures as set forth be KIN-TEK Analytical, Inc.)
 - Feed the calibration gas to the analyzer and run the analyzer calibration procedure as per operating instructions
 - Many concentrations levels can be created by adjusting the flow rate of the gas standards generator

- Advantages of Permeation Tube Technology over Gas Cylinders
 - Dynamic standards Made fresh, not pre-made and allowed to sit over time

- Advantages of Permeation Tube Technology over Gas Cylinders
 - Safety:
 - Gas cylinders are heavy, cumbersome to move, and present a safety hazard because of the heavy weight and lack of mobility
 - Permeation tubes are the size of a pencil, contain only a small amount of toxic compound (<2 mL), cylinders have much more
 - Permeation tubes are rugged and can be run over by a car

- Advantages of Permeation Tube Technology over Gas Cylinders
 - Cylinders are under an immense amount of pressure
 - Permeation tubes have no valves that can potentially fail or break off
 - No special equipment required for transportation
 - Most permeation tubes can be shipped world wide as non-hazardous goods because of the small amount of compound in the tube

- Advantages of Permeation Tube Technology over Gas Cylinders
 - Cost effective:
 - One tube can often replace 10 cylinders
 - Permeation tubes can typically deliver
 concentrations over a range of 20:1 using primary
 dilution and up to 10,000:1 with secondary
 dilution

- Advantages of Permeation Tube Technology over Gas Cylinders
 - Gas cylinders are often inaccurate or unreliable at low level concentrations (low ppm to ppb)
 - In low level concentration cylinders, trace components can adsorb to the walls of the cylinder
 - In low concentration cylinders, the trace components can also react with the metal walls of the cylinder causing inaccuracy and ultimately, unreliability